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Abstract. The effective spin bonds in a material with both charge-transfer and Hubbard- 
Mort gaps are investigated. With the assumption that there are localized spins which can be 
described by aspin-only Hamiltonian in realspace, the spin-couplingstrengthsof the bonds 
are analytically calculated by an exact mapping from an extended Hubbard model to a 
Heisenberg model for both the undoped and the dopedcases. The result also providessome 
informationon the formofthespin-only Hamiltonian for the descriptionoftheapindegrees 
of freedom of the system. 

1. Introduction 

It has been commonly accepted that the spin degrees of freedom of electrons in a 3d 
transition-metal compound with a Hubbard-Mott gap at the insulating limit can be well 
described by the Heisenberg model with AF superexchange between the nearest spins. 
Mott [l] and Hubbard [2] have provided a basic solution to this problem by pointing out 
that, if the Coulomb and exchange energy U is large compared with the one-electron 
dispersional band width, the polarity fluctuations are suppressed and a correlation gap 
of order U occurs. This idea has formed the basis for the separation of the excitations 
into low (spin-only) and high (charge fluctuation) energy scales and also forms the basis 
for the very successful Anderson [3] theory of superexchange in describing the low- 
energy-scale properties in terms of spin-only Hamiltonians. Recently Zaanen and 
Sawatzky [4] have pointed out that the Mott-Hubbard theory implies that the band gap 
is a d 4  gap which, although correct for the Ti and V compounds, probably is not 
the case for the late-transition-metal compounds where the gap variation with anion 
electronegativity strongly indicates a gap of charge-transfer type. The AF superexchange 
has been calculatedfor athree-centre model with a bondangle of 180"by the perturbation 
scheme [3,5] and byconsiderationofthespinconfiguration[4]. Morerecently, thestudy 

. of Cu-Cu bonds in copper oxides has been re-excited by the discovery of high-T, 
superconductors, and the t-J model (a generalization of the spin-only Hamiltonian by 
including the charge fluctuation terms) has been extensively investigated for both the 
doped and the undoped cases [6]. However, there are still some puzzling details of the 
description of the spin degrees of freedom in these compounds. On the one hand, in the 
case with a charge-transfer gap, we need to know to what accuracy the low-energy-scale 
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propertiescan be regarded as processes which involve only the spin degrees of freedom. 
On the other hand, there is some controversy about the form of the spin-only Ham- 
iltonian in the doped case; some models involve only Cu 3d spins [6] and others involve 
both Cu 3d and 0 2p spins [7J. 

In this paper we present an exact mapping from a model with both charge-transfer 
and Hubbard-Mott gaps to a spin-only model at the insulating limit, in order to gain 
some insight into the above problems. The two kindsof spin-only models (one involving 
only the 3d spins and the other involving both the 3d and the 2p spins) are compared for 
the undoped case and the doped case. A projection coefficient in this mapping is used 
to describe the weight of 3d spin-only states in the original ground state. 

2. Exact mapping for the undoped case at the insulating limit 

As has been pointed out by Anderson [3] andothers[S], at the insulatinglimit anearest- 
neighbour magnetic bond with a bond angle of 180" in a transition-metal compound is 
only relevant to a three-centre model with two 3d orbitals and a 2p orbital in between: 

H = t x ( p ; d , + ~ c ) +  Uxnj ,ni- ,  + A x p A p ,  (1) 
1.0 i.0 D 

wherep,andd,are the holeoperatorsfor the2pand the3dstates, respectively,i = 1 , 2  
isthesiteindexfor3dorbitals, Uisthe Mott-HubbardgapandA = -  isth the charge- 
transfer gap, nj ,  = d:,,d,. There are three levels: the lower Hubbard level, the upper 
Hubbard level and the charge-transfer level. The energy of the lower Hubbard level is 
set to zero, and the gaps U and A are both much larger than f to guarantee that the 
compound is an insulator. 

I n  the undopedcase, thereare two holesin the three-centre modelandtheeigenstates 
of Hamiltonian (1) can be expressed by linear combinations of 15 basis vectors. By 
consideration of symmetry they can be separated into several groups and solved as 
follows. 

For group 1. the total spin S = 0. There are six eigenstates which can be further 
decomposed into two subgroups. 

(i) The first subgroup includes four eigenstates expressed as 

vi = ailxl  + a12x2 + ai3x3 -t ai4x4 ( i  = 1,2,3,4) (2 )  

with 

-2-l/2(d* d* - ~ d i  d* 
I -  I T  2 1  I1  2 r ) I O )  

X ?  

~ 3 = 2 - @ ( d ] t d : (  +d:~d$i) lO) ~ , , = p ' ~ p f  10) 

?(d; 1 P'J - d: L P * ~  + P'I d l i  - p'1d:T ) 10) (3) 

where 10) is the vacuum state for the holes. The secular equation for vi is then 

E(A - E ) ( U -  E)(2A - E) + 4t2(U- E)(A - E )  - 2rZE(2A + U-  2E)  = 0. (4) 

This is a fourth-order algebraic equation which has analytical solutions. Here we do not 
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write the complicated expressions for these and only denote the eigenvalues as E, 
(i = 1-4), corresponding to the eigenstates with the following normalized coefficients: 
a .  I1 = -2'f2hi/Ei an = hilt ai, =2'f2hi/(U- E , )  a, =2hi/(2A - E ; )  
with 

(5 )  hi = [2E;' + t-' + 2(U - Ei)-' + 4(2A - E;)-  2 I -112, 

(ii) The second subgroup has two eigenstates; they are 
Q; = aisxs + ai6x6 ( i  = 5 . 6 )  

. . .  . 
with 

xs=$(d: tp '~  -d : ,P t t  -Pt id: I  +P'jd:t)IO) 

x6 = 2-@(d: 1 d: 1 - d:? d';l )IO) (6)  

(7) 

which have the eigenvalues 

and the coefficients 

with 

E ,  = ${U + A - [(U - A)' +8t2]'fi} E6 &{U+ A + [ (U  - A)2 + S~']l''] 

aj5 = 2hj/(A - E i )  ai6 = 2 ' /2h i /~  (i = 5 , 6 )  

hi = [4(A - Ei)-' + 2 ~ - ' ] - ' / ~ .  ( 8 )  
Group 2 has total spin S = 1. There are three energy levels each of which has three 

degenerate eigensrates with the z component S, of the total spin equal to 1,0 and - 1: 
E7 = E l ,  = E13 = & [ A  - ( A 2  + St') ' / ' ]  

E ,  =El1  = EI4 =$[A + ( A 2  + 8t')'Pj (9) 
EP = El' = E l s  = A .  

(i) The states with S, = 0 are 
V c  = ar1x7 + a&'S (i = 7,s) 

17 = 2-'f2(d: d:i + d:l  d: t ) IO)  

x s  = t (4  t P '1 + dl  1 p +t + p'i 4 1 + p i  d: t ) lo) 

with 

and the coefficients 

a, = - Z10hi fE i  a. =hi l t  
with 
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Thus we have found all the eigenstates and their energy levels of Hamiltonian (1) in 
the undoped case. The four low-lying states are VI, Q,, ?#J and Q 13. At the same time 
the spin-only Hamiltonian 

HI = J S ,  *S2 (15) 

has four eigenstates: one singlet and three triplets 

with eigenvalues 

= J/4. (17) E(” 1 - - -3J/4 

Because the spin-only excitations are the low-energy-scale processes [ 1,2], we need to 
select only the four low-lying states of H to make the projection to the phase space of 
HI. After that we find an exact one-to-one mapping: 

VI + VY) V7 + V P  h + V s L ’  VI3 -3 Vy’ (18) 

with the eigenvalue correspondences 

EI + EI 

J =  E1,(10.13) - E t ,  (19) 

( I )  
E7.10.13 + Ez.3.a. 

From this the superexchange Jcan be derived as 

(1) 

We should notice, however, that only a fraction of the low-lying states of H coincides 
with the correspondingstatesconsistingofonly Cu 3dorbitals. We can use the amplitude 
of the projection of the ground state of H to the corresponding Cu spin state to charac- 
terize the weight of the mapping: 

g = la11 I. (20) 
In figure 1 the variations in J and g with the values of U/ t  and A/t are illustrated. It can 
be seen that J is always AF like and is very sensitive to the value of the charge-transfer 
gap if A < U. The parameterg approachesunity only when U/t+ mand A / t -  i4 This 
means that the Cu spin-only states only partly reflect the spin degrees of freedom for 
finite gaps. 

3. Exact mapping for the doped case at the insulating limit 

In real crystals the three levels of Hamiltonian (1) are extended to three subbands with 
gaps Uand A .  In thedopedcase, thesecondsubbandis partially filled and thecompound 
becomes a conductor. So the spins are not localized and the description of the spin 
degreesoffreedom becomescomplicated. However, ifthe hopping integralsareso small 
that spins can be regarded as localized, we can still use the spin-only Hamiltonian. In 
this case the three-centre model has three holes, and Hamiltonian (1) has 20 basis 
vectors. The eigenstates and eigenvalues can be solved similarly. 

For S = 4, S, = 1, there are eight eigenstates. 
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FigureI.VariationsinJandg with Liltand Altin theundoped.case 
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b ,  = u;(ZA - U) 
bg = u;[(A - Ej)(2A - E ; )  - 2r']/r 

b;* = u;[2L2 - ( A  - Ei)(U - E , ) ] / [  

b,x = u , [ ( A  - E i ) / 2 A  + U - 2Ej) - 4 p ] / ( U  + A - E , )  (24) 
~j = i(2A - U)' + { [2 t2  - ( A - E ; ) ( U - E ; ) ] '  + [ ( A - E j ) ( Z A -  E , )  - 2 P ] 2 ] / P  

+ [(A - E;)(ZA + U -  2Ei) - 4t2]'/(U + A - Ej)'D"". 

The corresponding eigenvalues E, (i = 5,6,7,8) are four roots of the secular equation 

(U - E)(2A - E)(A - E)(U + A - ~ E )  - ['(U - 2A - 2E)' + 4t4 = 0. (25) 

For S = 1, S, = -1, the eight eigenstates (q;, i = 9-16) can be obtained from q ]-q8 
by exchanging spin up and spin down. The eigenvalues are 

Ei+* = Ej fori from 1 to 8. (26) 

For S = I t ,  there are four degenerate states with eigenvalue 

E17 = E18 = E19 = E m  = A. (27) 

(i) The state with S, = 4 is 
q 17 3-'''(d: 7 p'~ d: + d: 1 p'~ d: + d: 1 p i  d; )IO). (28) 

(ii)Thestate with& = -I(q1s)can be obtainedfromq,,,byexchangingspinupand 

(iii) The state with S, = 1h is 
spin down. 

v i 9  = ~ : , P ' . I ~ : I  10). (29) 

q'zo = d ; ~ p ' h d : ~  10). (30) 

(iv) The state with S, = - 11 is 

There is no correspondence between the four low-lying states (cp q5,  cp9 and q 13) 
and the eigenstates of H1. We have to search for the correspondence between eight low- 
lyingstates(q,, rps, q9, q ]3, q17,~q18, qlsand qZU)with the eigenstatesof the following 
spin-only Hamiltonian: 

H Z = J , S , . . S Z + J '  S i - s  

where s is the spin at the 2p orbital. These eigenstates are 

;=I.' 
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A/*  
Fiiure 2. Variations in J , ,Y  and g with U / I  and All  in the doped case 

p(’) 1 -  - 6-I/2(di tP’td:l + d:lPtld:t  - 2 d i ; t ~ l d : t ) I O )  

9 ) 3  - I T P ; ~ : ~  -d:ip\d:t  IO) 
9 ) 5  (’) - - 3-l/2(d: tPt ld:(  + d : t P \ d i t  +d:(P’ td i i  10) 

d ’ = d : t p \ d : ,  lo) 

(’) - 2-l/2(d? 
(32) 

andqf’,  94 (2’ , q6 (2) and q8 (2) areobtainedfrom9)r2’, qy’, q~’andq$’,respectively,by 

(33) 

exchanging spin up and spin down. The corresponding eigenvalues are 

E(’) - Ef’  = J,  /4 - J’ 1 -  E r ’  = E f ’  = -3J,/4 
E‘2’ - - (2’ - (2) 

5 - 6 - E7 - E8 = Ji/4 +J’/2. 

After projecting the eight low-lying states of Hamiltonian (1) onto the space of Ham- 
iltonian (31), we also find an exact one-to-one mapping: 

(2) PI --f 9)Y) 9)s -+ 9)f) 9)s + 9)Y) 9 ) 1 3 * 9 ) 4  

with 

9) 17 -+ 9)P’ V I 8  --* 9)s’ 9 ) 1 9 - + d Z )  9)m+P!) 

(34) 

(35) 

(2’ (2’ 
Ei.9 + Ei.2 E5.13 * E!% E17.18.19.20 + E5.6.7.8.  

The spin couplings in (31) can be determined as 

J’ = 2(E17.18.i9.~) - Et,9)/3 Jt = El,9 - E5,]3 + J’. 
Similarly, we define the coefficient lbt, l  = g as a measure of the coincidence of the 
ground state of H with the corresponding Cu spin-only states. 

In figure 2 we plot the variations in J , ,  J’ andg with U/fand A/f. 
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4. Diseussion 

We have described a new approach for mapping a three-centre system as a spin-only 
system with the assumption that the spin degrees of freedom can be regarded as localized 
in real space. We have also provided a parameter to characterize the weight of projection. 
In the undoped case, the three-centre system has four low-lying states which coincide 
with the statesof the spin-only Hamiltonian (15) after projection. At the same time, in 
the doped case, the spin degrees of freedom of the eight low-lying states coincide with 
the spin configuration of the states of Hamiltonian (31). If we further project the eight 
states onto H I  space, we can see that qs  and q 13 correspond to the singlet and the other 
six states are combinations of the triplet states. This means that, by doping, the triplet 
level of Hamiltonian HI is split into two levels: one is below the singlet level and the 
other is above. If we treat the 3d spins as kinglike spins, the J'-term in H Z  can be 
transformed into an effective ferromagnetic interaction between the 3d spins, which 
leads to equivalence between H ,  and H 1 ,  as suggested by Aharony eta1 [SI. 
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